
Pick features for cell type prediction
pickProbes.Rd
Pick features for cell type prediction
Usage
pickProbes(
dataNormed,
probeList = c("Ttest", "Caret", "IDOL", "DHS"),
probeSelect = c("any", "both"),
nProbes,
caretMods = c("lasso", "EL", "BLR", "CART", "RF", "GBM", "GAnLDA", "GAnRF", "GAnNB",
"GAnSVM", "GAnNN"),
seed = 1,
p.val = 0.05,
min.delta.beta = 0,
filterK = 1000,
plotRef = TRUE,
verbose = TRUE
)
Arguments
- dataNormed
A list of dataframe containing the normalized data, output of
combData()
- probeList
A character, specifying how the probe should be selected. Options include "Ttest", "Caret_CV", "Caret_LOOCV", and "IDOL"
- probeSelect
If
probeSelect = Ttest
, specify how should the top probes be picked from T test output, options include "both", "any", "pval"- nProbes
An integer specifying the number of probes to pick for each cell type
- caretMods
If
probeSelect %in% c("Caret_CV", "Caret_LOOCV")
, input a vector of characters that specify the models to use for feature selection- seed
An integer specifying the seed for reproducibility
- p.val
If
probeSelect = Ttest
, specify a numeric value for maximum pvalue cutoff- min.delta.beta
If
probeSelect = Ttest
, specify a numeric value for minimum delta beta (effect size) cutoff- filterK
If
probeSelect %in% c("Caret_CV", "Caret_LOOCV")
, input an integer representing the number probes to input to the machine learning algorithms with top T test probes- plotRef
A Boolean specifying whether to plot a heatmap showing the clustering performance using the probes selected
- verbose
A Boolean specifying whether the function should be verbose or not